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Supersonic flow past a bluff body with a detached shock 
Part I1 Axisymmetrical body 

By W. CHESTER 
Department of Mathematics, University of Bristol 

(Received 20 August 1956) 

SUMMARY 
This paper considers the flow at high Mach number behind the 

curved shock formed when a supersonic stream impinges on an 
axisymmetrical body with a rounded nose. 

The solution is obtained as a double expansion in 
6 = (Y- l) /(r+ 1 1 9  

where y is the adiabatic index, and M-2 ; the expansion is developed 
to within terms of order (6 + M-2)3. 

Expressions are obtained for the distance between the body 
and the shock, the radius of curvature of the shock compared with 
that of the body, and the pressure distribution on the body. 

INTRODUCTION AND FUNDAMENTAL EQUATIONS 

The technique evolved in Part I (Chester 1956) is used here to investigate 
supersonic flow past a blunt-nosed axisymmetrical body. The exposition 
is less detailed, for the ideas involved are essentially those of the previous 
paper. 

The common axis of the body and of the shock wave formed ahead of it 
is in the direction of the uniform flow upstream of the shock. The 
x-coordinate is measured along this axis from an origin at the vertex of 
the shock. 

Upstream of the shock the velocity, pressure and density are denoted 
by (V,  0), p,, p, respectively. Corresponding quantities in the region of 
disturbed flow behind the shock are (Vu, Vv), po Vzp and po p(y f l ) / ( y  - 1) ; 
as before, y is the adiabatic index. 

The equations of conservation of mass, momentum and entropy are, 
with (y - l)/(y + 1) = 8, 

The radial coordinate is denoted by y. 

1 a a 
(PUY) + 5 (PVY) = 0 ; 

J u & (pp-’> + e, 2- aY (pp-’) = 0. 
a 



Supersonic jlow past a bluSf body with a detached shock 49 1 

The first of these equations implies the existence of a stream function $ 
In  the uniform flow ahead of the 

With the independent variables transformed to (I), y ) ,  equations (1) 

such that SgV = puy, S$% = -pvy. 
shock, $ = +y2 and is continuous across the shock. 

become 

On the body, $ = 0. 

u = 1 - ( 1 - S )  - -M-2}; { 1 :y2 

z, = (1-S)y - -M-”>; 
(1 +Y2 

gM-2)  - { l + y 2  l + s  ’ 

1 

1 p = (1-6) - - - 

u2+ v2+ ( 1  + 6)p/p  = 1 + (1 - 6)s-1M-2 ; 

> 

where f is an arbitrary function of $. 
We consider the particular case of a paraboloidal shock with unit radius 

of curvature at the nose. The equation of the shock profile is then x = +y2, 
and the shock transition relations give the following boundary conditions 
to be satisfied on $ = &y2: 

(3) 

I 1 
= 1 + ( 1  - 6)6-1M-2( 1 + y2) * 

From these equations it follows that 

From the third of equations (2) we also have 

Equations (3) then give 

and, hence, the equation of the body is 

As in Part I, it is not difficult to show that equation (6) includes 
automatically the stand-off distance between the body and the shock. 

Z K 2  
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BASIC SOLUTION 

When 6 = M-2 = 0, equation (4) becomes 
1 

f(*) = m# +s-1M-2, 

and equations (2) are easily solved using 
The results are 

(2*)1/2y 
(1 + 2$)1/2( 1 +y2)1’2 ’ u = y v =  

the boundary conditions (3). 

where 
A = [(2$)1/2( 1 + 2#)1/2- sinh-l(2$)li2 +y( 1 +y2)ll2 + sinh-ly]. (9) 

The next step is to improve this approximation so as to obtain expressions 
for the velocity components which are uniformly valid as # + 0. The 
expressions for u/v, p and p do not require modification ; and so we have, 
correct to theJirst order of small quantities, 

2 = f($)pV-I = f($){ 1 + 26 log p }  
P 

= ”1+6-1M-2(1+2*)-s-2M-2(1+2*)$ 1 +2* 

This expression for p /p  is substituted in the second of equations 
(2) to give 

where d = 6 + M-2. 

which are uniformly O(d) are discarded. 
obtained : 

Equation (11) is now solved in conjunction with u = vy, and all terms 
The following relations are then 

y(2* + dB)l’2 
(1 +y2)1’2( 1 + 2*)”2 ’ u = y v =  

where 

FIRST-ORDER APPROXIMATION 

From equations (8) and (12)’ we can now obtain the following expression 
for S/pv, which is uniformly correct as far as terms which are O(d): 

(14) 
6 
pv A(l  +2#)1/2(2$+dB)1/2 

2y( 1 +y2)2(d+ 294M-2) . - =  
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We can then obtain a first approximation to the equation of the body 
by the substitution of (14) in (7). The result is 

Note that equation (15) contains terms which are O(d)3/2, and is in fact 
correct to within O(d2). 

T o  obtain the velocity components we must first calculate u/v from 
(6) which gives, correct to within O(d2), 

where 
U/V = y( 1 +g) + 2dI4~-~( 1 1 + 21/~)~/~(2I4 + dB)-lI2, (16) 

g = - 2dI4~-~( 1 +Y~) ' /~(  1 + 214)'!2(214 + dB)-1'2 + 

+ M-2( 1 +y2)2 log(2y( 1 +y2)1/2A-1} - 

- 2d(1 +y2)2 ((2I4 + dB)1/2 - (2+)lI2}]. (17) 
y( 1 +yf)ll2 + sinh-'y 

The form of the expression for u/v anticipates the fact that, near y = 0, 

Hence we 
u - 26+/py2 - 2d14/y2 

(the argument is similar to the corresponding one in Part I). 
may write 

where U is O(y2) near y = 0. 

and the singular term in (16) has now disappeared. 

solved for U, we find that 

u = U+2d$/y2, (18) 

UlV = Y(1 +g); (19) 

Equation (16) then gives 

When these relations are substituted in (1  1) and the resulting equation 

u = - 2 4  7 +y(1+2+)-1:2(1+y2)-1/2(1+ &)x 
Y 

214 + 2(d + 214M-2)10g 

from which u and v are easily obtained using equations (14) and (15) 
respectively. 

Finally the pressure is obtained by integration of the equation 

using the previously calculated expression for u and the boundary condition 
on + = +yz obtained from the last of equations (3). Although the variation 
of p with both and y is required before the next approximation can be 
found, the complete expression is somewhat involved and we quote here 
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only the expansion for small values of y and 
given exactly, but the rest of the terms have errors which are O(ya) : 

= 0. The basic terms are 

3277 sinh-ly 1 1201 
+d - - - -y2+ p = (1 +y2)-3/2[4(1 +y2) l /2+ - 2Y ( 2 252 

7 

SECOND-ORDER APPROXIMATION 

The precautions referred to in Part I also apply here; otherwise the 
Apart process is straightforward, and only the final results are given. 

from the basic terms, fourth and higher powers of y have been ignored. 
The equation of the body is 

x = {1-(y)1'2k+ d2-dM-2fM-4- 

- 168 463 a(,) 8d 112 + - 13 dM-2(3)1iB 8d - 3 M-4( 8d %) 112 + 
12 

1 2 l+-d+-M-Z--d 19 2 47 - 8d ' I 2  +- 11173d2- 50 -dM-2+ 23 -M-4- 
+rY[ 6 3 15 ( 3 )  840 21 6 

-- 2152963 d2 (7) 'I2 + 287 dM-2 ( y )  - !? M-4 (7) "'1 ; (22) 
20 lo  

and the pressure on the body is given by 

(1+y2)3/2p = 1 2(1+y2)1/2+2y sinh-ly - Zd+M-2+ 1 -d2-  1 3  -dM-2+ - M A -  3 
8 2  2 

1201 7 32 8d 112 10009633d2 I 1 dM-2+ 
-y2{md-DM-2--d 9 ( 3 )  - + 55440 252 

252 189 27 
+ - M - 4 - S 2 d 2 -  725 (y)'" - !!? dM-2( Y)ll2 - M-4 ~ 8d 4 2  ( ) }. (23) 

DISCUSSION OF RESULTS 

Although, for reasons given in Part I, the analysis is carried out for the 
case of a shock having unit radius of curvature at the nose, the following 
results have been corrected to apply to a body having unit radius of curvature 
at the nose. 

Figures 1 and 2 show respectively the radius of curvature of the shock 
and the distance between the body and the shock along the axis of symmetry 
for various values of d. The isolated point in each figure is an experimental 
result given by Oliver (1956). The curves are calculated from equation (22), 
except for the broken parts which are simply extrapolations through values 
of d for which the convergence of (22) may not be satisfactory. 

A comparison of corresponding expressions in Part I and I1 shows that 
the convergence is poorer in the axisymmetrical case. Nevertheless, one 
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or two general conclusions may be drawn. As in the two-dimensional 
problem, the stand-off distance seems to be virtually independent of M-2, 
except in so far as this parameter influences d, and the single curve in 
figure 2 covers all cases. 

As would be expected, under similar conditions both the radius of the 
shock and the stand-off distance are smaller in the axisymmetrical problem;- 
a rough guide for the distance between the body and the shock is 2d in the 
two-dimensional case, and $d in the axisymmetrical case. 

Figure 1. The radius of curvature of the shock on the axis of symmetry for various 
The unit of length is the radius of 

The cross denotes an 
values of d(= (y-l)/(y+l)+M-~).  
curvature of the body on the axis of symmetry. 
experimental result. 

Figure 2. The distance between the body and the shock along the axis of symmetry 
The unit of length is the 

The cross denotes 
for various values of d(= (~- l ) / (y+l )+M-~) .  
radius of curvature of the body on the axis of symmetry. 
an experimental result. 

Because of the large factor multiplying d2 (compared with the multiplier 
of d )  in the coefficient of y2 in equation (23), the expression for p cannot 
be regarded as reliable save for very small values of d in the neighbourhood 
of 0.01. 

When d = M-2 = 0, the pressure distribution on the body is known 
exactly, and the ordinate of the sonic point is 0.680 compared with the 
value 0-629 in the two-dimensional case. According to calculations based 
on equation (23), the initial tendency is for the ordinate to decrease as d 
increases (and M-2 = 0) in contrast to an increase in the two-dimensional 
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case (see Part I, figure 3), the ordinates agreeing in the two cases for a value 
of d around 0.02. But up to this value the decrease is only 0.3%, and the 
most that can be said is that initially there is no appreciable variation in the 
position of the sonic point. 

Since the pressures on the body at the stagnation point and the sonic 
point are functions only of d and M-2 (see equations (29) and (30) of Part I), 
it follows that, with similar conditions, the pressures are the same at these 
corresponding points in the two-dimensional and axisymmetrical cases. 
Hence we may deduce that for sufficiently small values of d, the pressure 
distribution in the two cases do not differ appreciably in the neighbourhood 
of the nose. 
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